INTERPRETACIÓN GEOMÉTRICA DE SISTEMAS DE ECUACIONES LINEALES CON TRES INCÓGNITAS
Representación matricial y vectorial

El sistema de m ecuaciones lineales con n incógnitas siguiente:

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
 &\vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m
\end{align*}
\]

debe poder escribirse en forma matricial como sigue:

\[
A \cdot X = B,
\]

donde:

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix},
\]

\[
X = \begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix},
\]

\[
B = \begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{pmatrix}.
\]
La matriz A se llama *matriz de coeficientes* de S

$$y la matriz \quad A^* = \begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} & b_1 \\ a_{21} & a_{22} & \ldots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mn} & b_m \end{pmatrix}$$

se denomina *matriz ampliada u orlada* de S.

Si llamamos a_1, a_2, \ldots, a_n a los vectores columna de A:

$$a_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix} \quad \text{si } j = 1, 2, \ldots, n,$$

S puede escribirse como:

$$x_1 \cdot a_1 + x_2 \cdot a_2 + \ldots + x_n \cdot a_n = B \quad \text{que es la expresión vectorial de } S.$$
Teorema de Rouché - Fröbenius

El sistema de ecuaciones lineales S tiene solución \iff el rango de la matriz de coeficientes es igual al de la matriz ampliada

$$(\text{rango } A = \text{rango } A *)$$
Discusión de un sistema general:

Consideremos el sistema general:

\[
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
=
\begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{pmatrix}
\]

Puede ocurrir:

\[\text{Rango } A = \text{rango } A^* = n = \text{nº de incógnitas} \implies S \text{ compatible determinado.}\]

\[\text{Rango } A = \text{rango } A^* = r < \text{nº de incógnitas} \implies S \text{ es compatible indeterminado.}\]

\[\text{Rango } A \neq \text{rango } A^* \implies S \text{ es incompatible.}\]
INTERPRETACIÓN GEOMÉTRICA DE UN SISTEMA DE DOS ECUACIONES LINEALES CON TRES INCÓGNITAS

Cada ecuación lineal con tres incógnitas, representa a un plano en el espacio. Consideremos el sistema S formado por las ecuaciones de ambos. Sean A y A^* las matrices de coeficientes y ampliada de este sistema

Si $\text{rango } A = \text{rango } A^* = 2 \Rightarrow$ el sistema es compatible indeterminado y los dos planos son secantes.

Si $\text{rango } A = \text{rango } A^* = 1 \Rightarrow$ el sistema es compatible indeterminado y los dos planos son coincidentes.

Si $\text{rango } A = 1 \neq \text{rango } A^* = 2 \Rightarrow$ el sistema es incompatible y los dos planos son paralelos.
Consideremos ahora el sistema S formado por las tres ecuaciones generales de tres planos dados. Sea A la matriz de coeficientes y A* la matriz ampliada de este sistema.

Si rango A = rango A* = 3 ⇒ S sistema compatible determinado ⇒ los tres planos tienen un único punto P común.

Si \(x = x_0, y = y_0, z = z_0 \) es la solución del sistema ⇒ (\(x_0, y_0, z_0 \)) son las coordenadas del punto P común.
Si rango \(A = \text{rango } A^* = 2 \Rightarrow \)

\(\Rightarrow \) S sistema compatible

indeterminado y

los tres planos pasan por una misma

recta \(r\)*

La solución del sistema nos proporciona sus ecuaciones paramétricas.
Si rango $A = \text{rango } A^* = 1 \Rightarrow \\
\Rightarrow S \text{ sistema compatible indeterminado y } \\
\text{los tres planos coinciden}.$
Si S sistema incompatible con
rango $A = 2$, rango $A^* = 3$
y cada subsistema de dos ecuaciones
es compatible indeterminado con
rango 2\Rightarrow planos secantes dos a
dos
Si S sistema incompatible con
rango A = 2, rango A* = 3,
exactamente un subsistema de dos
ecuaciones es incompatible y los
otros dos subsistemas son
compatibles indeterminados con
rango 2 ⇒

dos planos son secantes y el tercero
paralelo a uno de los anteriores
S sistema incompatible con rango $A = 1$, rango $A^* = 2$
y los tres subsistemas de dos ecuaciones incompatibles \iff
los tres planos son paralelos